GNU Radio 3.6.4.2 C++ API
|
00001 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H 00002 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H 00003 00004 00005 #include<volk/volk_complex.h> 00006 00007 00008 #ifdef LV_HAVE_GENERIC 00009 00010 00011 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00012 00013 const unsigned int num_bytes = num_points*8; 00014 00015 float * res = (float*) result; 00016 float * in = (float*) input; 00017 float * tp = (float*) taps; 00018 unsigned int n_2_ccomplex_blocks = num_bytes >> 4; 00019 unsigned int isodd = (num_bytes >> 3) &1; 00020 00021 00022 00023 float sum0[2] = {0,0}; 00024 float sum1[2] = {0,0}; 00025 unsigned int i = 0; 00026 00027 00028 for(i = 0; i < n_2_ccomplex_blocks; ++i) { 00029 00030 sum0[0] += in[0] * tp[0] + in[1] * tp[1]; 00031 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0]; 00032 sum1[0] += in[2] * tp[2] + in[3] * tp[3]; 00033 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2]; 00034 00035 00036 in += 4; 00037 tp += 4; 00038 00039 } 00040 00041 00042 res[0] = sum0[0] + sum1[0]; 00043 res[1] = sum0[1] + sum1[1]; 00044 00045 00046 00047 for(i = 0; i < isodd; ++i) { 00048 00049 00050 *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]); 00051 00052 } 00053 /* 00054 for(i = 0; i < num_bytes >> 3; ++i) { 00055 *result += input[i] * conjf(taps[i]); 00056 } 00057 */ 00058 } 00059 00060 #endif /*LV_HAVE_GENERIC*/ 00061 00062 #ifdef LV_HAVE_SSE3 00063 00064 #include <xmmintrin.h> 00065 #include <pmmintrin.h> 00066 #include <mmintrin.h> 00067 00068 00069 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_u_sse3(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00070 00071 unsigned int num_bytes = num_points*8; 00072 00073 // Variable never used? 00074 //__VOLK_ATTR_ALIGNED(16) static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000}; 00075 00076 union HalfMask { 00077 uint32_t intRep[4]; 00078 __m128 vec; 00079 } halfMask; 00080 00081 union NegMask { 00082 int intRep[4]; 00083 __m128 vec; 00084 } negMask; 00085 00086 unsigned int offset = 0; 00087 float Rsum=0, Isum=0; 00088 float Im,Re; 00089 00090 __m128 in1, in2, Rv, fehg, Iv, Rs, Ivm, Is; 00091 __m128 zv = {0,0,0,0}; 00092 00093 halfMask.intRep[0] = halfMask.intRep[1] = 0xFFFFFFFF; 00094 halfMask.intRep[2] = halfMask.intRep[3] = 0x00000000; 00095 00096 negMask.intRep[0] = negMask.intRep[2] = 0x80000000; 00097 negMask.intRep[1] = negMask.intRep[3] = 0; 00098 00099 // main loop 00100 while(num_bytes >= 4*sizeof(float)){ 00101 00102 in1 = _mm_loadu_ps( (float*) (input+offset) ); 00103 in2 = _mm_loadu_ps( (float*) (taps+offset) ); 00104 Rv = _mm_mul_ps(in1, in2); 00105 fehg = _mm_shuffle_ps(in2, in2, _MM_SHUFFLE(2,3,0,1)); 00106 Iv = _mm_mul_ps(in1, fehg); 00107 Rs = _mm_hadd_ps( _mm_hadd_ps(Rv, zv) ,zv); 00108 Ivm = _mm_xor_ps( negMask.vec, Iv ); 00109 Is = _mm_hadd_ps( _mm_hadd_ps(Ivm, zv) ,zv); 00110 _mm_store_ss( &Im, Is ); 00111 _mm_store_ss( &Re, Rs ); 00112 num_bytes -= 4*sizeof(float); 00113 offset += 2; 00114 Rsum += Re; 00115 Isum += Im; 00116 } 00117 00118 // handle the last complex case ... 00119 if(num_bytes > 0){ 00120 00121 if(num_bytes != 4){ 00122 // bad things are happening 00123 } 00124 00125 in1 = _mm_loadu_ps( (float*) (input+offset) ); 00126 in2 = _mm_loadu_ps( (float*) (taps+offset) ); 00127 Rv = _mm_and_ps(_mm_mul_ps(in1, in2), halfMask.vec); 00128 fehg = _mm_shuffle_ps(in2, in2, _MM_SHUFFLE(2,3,0,1)); 00129 Iv = _mm_and_ps(_mm_mul_ps(in1, fehg), halfMask.vec); 00130 Rs = _mm_hadd_ps(_mm_hadd_ps(Rv, zv),zv); 00131 Ivm = _mm_xor_ps( negMask.vec, Iv ); 00132 Is = _mm_hadd_ps(_mm_hadd_ps(Ivm, zv),zv); 00133 _mm_store_ss( &Im, Is ); 00134 _mm_store_ss( &Re, Rs ); 00135 Rsum += Re; 00136 Isum += Im; 00137 } 00138 00139 result[0] = lv_cmake(Rsum,Isum); 00140 return; 00141 } 00142 00143 #endif /*LV_HAVE_SSE3*/ 00144 00145 00146 #endif /*INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_u_H*/ 00147 00148 00149 00150 #ifndef INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H 00151 #define INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H 00152 00153 #include <volk/volk_common.h> 00154 #include<volk/volk_complex.h> 00155 #include<stdio.h> 00156 00157 00158 #ifdef LV_HAVE_GENERIC 00159 00160 00161 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_generic(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00162 00163 const unsigned int num_bytes = num_points*8; 00164 00165 float * res = (float*) result; 00166 float * in = (float*) input; 00167 float * tp = (float*) taps; 00168 unsigned int n_2_ccomplex_blocks = num_bytes >> 4; 00169 unsigned int isodd = (num_bytes >> 3) &1; 00170 00171 00172 00173 float sum0[2] = {0,0}; 00174 float sum1[2] = {0,0}; 00175 unsigned int i = 0; 00176 00177 00178 for(i = 0; i < n_2_ccomplex_blocks; ++i) { 00179 00180 00181 sum0[0] += in[0] * tp[0] + in[1] * tp[1]; 00182 sum0[1] += (-in[0] * tp[1]) + in[1] * tp[0]; 00183 sum1[0] += in[2] * tp[2] + in[3] * tp[3]; 00184 sum1[1] += (-in[2] * tp[3]) + in[3] * tp[2]; 00185 00186 00187 in += 4; 00188 tp += 4; 00189 00190 } 00191 00192 00193 res[0] = sum0[0] + sum1[0]; 00194 res[1] = sum0[1] + sum1[1]; 00195 00196 00197 00198 for(i = 0; i < isodd; ++i) { 00199 00200 00201 *result += input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1]); 00202 00203 } 00204 /* 00205 for(i = 0; i < num_bytes >> 3; ++i) { 00206 *result += input[i] * conjf(taps[i]); 00207 } 00208 */ 00209 } 00210 00211 #endif /*LV_HAVE_GENERIC*/ 00212 00213 00214 #if LV_HAVE_SSE && LV_HAVE_64 00215 00216 00217 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00218 00219 const unsigned int num_bytes = num_points*8; 00220 00221 __VOLK_ATTR_ALIGNED(16) static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000}; 00222 00223 00224 00225 00226 asm volatile 00227 ( 00228 "# ccomplex_conjugate_dotprod_generic (float* result, const float *input,\n\t" 00229 "# const float *taps, unsigned num_bytes)\n\t" 00230 "# float sum0 = 0;\n\t" 00231 "# float sum1 = 0;\n\t" 00232 "# float sum2 = 0;\n\t" 00233 "# float sum3 = 0;\n\t" 00234 "# do {\n\t" 00235 "# sum0 += input[0] * taps[0] - input[1] * taps[1];\n\t" 00236 "# sum1 += input[0] * taps[1] + input[1] * taps[0];\n\t" 00237 "# sum2 += input[2] * taps[2] - input[3] * taps[3];\n\t" 00238 "# sum3 += input[2] * taps[3] + input[3] * taps[2];\n\t" 00239 "# input += 4;\n\t" 00240 "# taps += 4; \n\t" 00241 "# } while (--n_2_ccomplex_blocks != 0);\n\t" 00242 "# result[0] = sum0 + sum2;\n\t" 00243 "# result[1] = sum1 + sum3;\n\t" 00244 "# TODO: prefetch and better scheduling\n\t" 00245 " xor %%r9, %%r9\n\t" 00246 " xor %%r10, %%r10\n\t" 00247 " movq %[conjugator], %%r9\n\t" 00248 " movq %%rcx, %%rax\n\t" 00249 " movaps 0(%%r9), %%xmm8\n\t" 00250 " movq %%rcx, %%r8\n\t" 00251 " movq %[rsi], %%r9\n\t" 00252 " movq %[rdx], %%r10\n\t" 00253 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t" 00254 " movaps 0(%%r9), %%xmm0\n\t" 00255 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t" 00256 " movups 0(%%r10), %%xmm2\n\t" 00257 " shr $5, %%rax # rax = n_2_ccomplex_blocks / 2\n\t" 00258 " shr $4, %%r8\n\t" 00259 " xorps %%xmm8, %%xmm2\n\t" 00260 " jmp .%=L1_test\n\t" 00261 " # 4 taps / loop\n\t" 00262 " # something like ?? cycles / loop\n\t" 00263 ".%=Loop1: \n\t" 00264 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t" 00265 "# movaps (%%r9), %%xmmA\n\t" 00266 "# movaps (%%r10), %%xmmB\n\t" 00267 "# movaps %%xmmA, %%xmmZ\n\t" 00268 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t" 00269 "# mulps %%xmmB, %%xmmA\n\t" 00270 "# mulps %%xmmZ, %%xmmB\n\t" 00271 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t" 00272 "# xorps %%xmmPN, %%xmmA\n\t" 00273 "# movaps %%xmmA, %%xmmZ\n\t" 00274 "# unpcklps %%xmmB, %%xmmA\n\t" 00275 "# unpckhps %%xmmB, %%xmmZ\n\t" 00276 "# movaps %%xmmZ, %%xmmY\n\t" 00277 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t" 00278 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t" 00279 "# addps %%xmmZ, %%xmmA\n\t" 00280 "# addps %%xmmA, %%xmmC\n\t" 00281 "# A=xmm0, B=xmm2, Z=xmm4\n\t" 00282 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t" 00283 " movaps 16(%%r9), %%xmm1\n\t" 00284 " movaps %%xmm0, %%xmm4\n\t" 00285 " mulps %%xmm2, %%xmm0\n\t" 00286 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00287 " movaps 16(%%r10), %%xmm3\n\t" 00288 " movaps %%xmm1, %%xmm5\n\t" 00289 " xorps %%xmm8, %%xmm3\n\t" 00290 " addps %%xmm0, %%xmm6\n\t" 00291 " mulps %%xmm3, %%xmm1\n\t" 00292 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t" 00293 " addps %%xmm1, %%xmm6\n\t" 00294 " mulps %%xmm4, %%xmm2\n\t" 00295 " movaps 32(%%r9), %%xmm0\n\t" 00296 " addps %%xmm2, %%xmm7\n\t" 00297 " mulps %%xmm5, %%xmm3\n\t" 00298 " add $32, %%r9\n\t" 00299 " movaps 32(%%r10), %%xmm2\n\t" 00300 " addps %%xmm3, %%xmm7\n\t" 00301 " add $32, %%r10\n\t" 00302 " xorps %%xmm8, %%xmm2\n\t" 00303 ".%=L1_test:\n\t" 00304 " dec %%rax\n\t" 00305 " jge .%=Loop1\n\t" 00306 " # We've handled the bulk of multiplies up to here.\n\t" 00307 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t" 00308 " # If so, we've got 2 more taps to do.\n\t" 00309 " and $1, %%r8\n\t" 00310 " je .%=Leven\n\t" 00311 " # The count was odd, do 2 more taps.\n\t" 00312 " # Note that we've already got mm0/mm2 preloaded\n\t" 00313 " # from the main loop.\n\t" 00314 " movaps %%xmm0, %%xmm4\n\t" 00315 " mulps %%xmm2, %%xmm0\n\t" 00316 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00317 " addps %%xmm0, %%xmm6\n\t" 00318 " mulps %%xmm4, %%xmm2\n\t" 00319 " addps %%xmm2, %%xmm7\n\t" 00320 ".%=Leven:\n\t" 00321 " # neg inversor\n\t" 00322 " xorps %%xmm1, %%xmm1\n\t" 00323 " mov $0x80000000, %%r9\n\t" 00324 " movd %%r9, %%xmm1\n\t" 00325 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t" 00326 " # pfpnacc\n\t" 00327 " xorps %%xmm1, %%xmm6\n\t" 00328 " movaps %%xmm6, %%xmm2\n\t" 00329 " unpcklps %%xmm7, %%xmm6\n\t" 00330 " unpckhps %%xmm7, %%xmm2\n\t" 00331 " movaps %%xmm2, %%xmm3\n\t" 00332 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t" 00333 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t" 00334 " addps %%xmm2, %%xmm6\n\t" 00335 " # xmm6 = r1 i2 r3 i4\n\t" 00336 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t" 00337 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t" 00338 " movlps %%xmm6, (%[rdi]) # store low 2x32 bits (complex) to memory\n\t" 00339 : 00340 :[rsi] "r" (input), [rdx] "r" (taps), "c" (num_bytes), [rdi] "r" (result), [conjugator] "r" (conjugator) 00341 :"rax", "r8", "r9", "r10" 00342 ); 00343 00344 00345 int getem = num_bytes % 16; 00346 00347 00348 for(; getem > 0; getem -= 8) { 00349 00350 00351 *result += (input[(num_bytes >> 3) - 1] * lv_conj(taps[(num_bytes >> 3) - 1])); 00352 00353 } 00354 00355 return; 00356 } 00357 #endif 00358 00359 #if LV_HAVE_SSE && LV_HAVE_32 00360 static inline void volk_32fc_x2_conjugate_dot_prod_32fc_a_sse_32(lv_32fc_t* result, const lv_32fc_t* input, const lv_32fc_t* taps, unsigned int num_points) { 00361 00362 const unsigned int num_bytes = num_points*8; 00363 00364 __VOLK_ATTR_ALIGNED(16) static const uint32_t conjugator[4]= {0x00000000, 0x80000000, 0x00000000, 0x80000000}; 00365 00366 int bound = num_bytes >> 4; 00367 int leftovers = num_bytes % 16; 00368 00369 00370 asm volatile 00371 ( 00372 " #pushl %%ebp\n\t" 00373 " #movl %%esp, %%ebp\n\t" 00374 " #movl 12(%%ebp), %%eax # input\n\t" 00375 " #movl 16(%%ebp), %%edx # taps\n\t" 00376 " #movl 20(%%ebp), %%ecx # n_bytes\n\t" 00377 " movaps 0(%[conjugator]), %%xmm1\n\t" 00378 " xorps %%xmm6, %%xmm6 # zero accumulators\n\t" 00379 " movaps 0(%[eax]), %%xmm0\n\t" 00380 " xorps %%xmm7, %%xmm7 # zero accumulators\n\t" 00381 " movaps 0(%[edx]), %%xmm2\n\t" 00382 " movl %[ecx], (%[out])\n\t" 00383 " shrl $5, %[ecx] # ecx = n_2_ccomplex_blocks / 2\n\t" 00384 00385 " xorps %%xmm1, %%xmm2\n\t" 00386 " jmp .%=L1_test\n\t" 00387 " # 4 taps / loop\n\t" 00388 " # something like ?? cycles / loop\n\t" 00389 ".%=Loop1: \n\t" 00390 "# complex prod: C += A * B, w/ temp Z & Y (or B), xmmPN=$0x8000000080000000\n\t" 00391 "# movaps (%[eax]), %%xmmA\n\t" 00392 "# movaps (%[edx]), %%xmmB\n\t" 00393 "# movaps %%xmmA, %%xmmZ\n\t" 00394 "# shufps $0xb1, %%xmmZ, %%xmmZ # swap internals\n\t" 00395 "# mulps %%xmmB, %%xmmA\n\t" 00396 "# mulps %%xmmZ, %%xmmB\n\t" 00397 "# # SSE replacement for: pfpnacc %%xmmB, %%xmmA\n\t" 00398 "# xorps %%xmmPN, %%xmmA\n\t" 00399 "# movaps %%xmmA, %%xmmZ\n\t" 00400 "# unpcklps %%xmmB, %%xmmA\n\t" 00401 "# unpckhps %%xmmB, %%xmmZ\n\t" 00402 "# movaps %%xmmZ, %%xmmY\n\t" 00403 "# shufps $0x44, %%xmmA, %%xmmZ # b01000100\n\t" 00404 "# shufps $0xee, %%xmmY, %%xmmA # b11101110\n\t" 00405 "# addps %%xmmZ, %%xmmA\n\t" 00406 "# addps %%xmmA, %%xmmC\n\t" 00407 "# A=xmm0, B=xmm2, Z=xmm4\n\t" 00408 "# A'=xmm1, B'=xmm3, Z'=xmm5\n\t" 00409 " movaps 16(%[edx]), %%xmm3\n\t" 00410 " movaps %%xmm0, %%xmm4\n\t" 00411 " xorps %%xmm1, %%xmm3\n\t" 00412 " mulps %%xmm2, %%xmm0\n\t" 00413 " movaps 16(%[eax]), %%xmm1\n\t" 00414 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00415 " movaps %%xmm1, %%xmm5\n\t" 00416 " addps %%xmm0, %%xmm6\n\t" 00417 " mulps %%xmm3, %%xmm1\n\t" 00418 " shufps $0xb1, %%xmm5, %%xmm5 # swap internals\n\t" 00419 " addps %%xmm1, %%xmm6\n\t" 00420 " movaps 0(%[conjugator]), %%xmm1\n\t" 00421 " mulps %%xmm4, %%xmm2\n\t" 00422 " movaps 32(%[eax]), %%xmm0\n\t" 00423 " addps %%xmm2, %%xmm7\n\t" 00424 " mulps %%xmm5, %%xmm3\n\t" 00425 " addl $32, %[eax]\n\t" 00426 " movaps 32(%[edx]), %%xmm2\n\t" 00427 " addps %%xmm3, %%xmm7\n\t" 00428 " xorps %%xmm1, %%xmm2\n\t" 00429 " addl $32, %[edx]\n\t" 00430 ".%=L1_test:\n\t" 00431 " decl %[ecx]\n\t" 00432 " jge .%=Loop1\n\t" 00433 " # We've handled the bulk of multiplies up to here.\n\t" 00434 " # Let's sse if original n_2_ccomplex_blocks was odd.\n\t" 00435 " # If so, we've got 2 more taps to do.\n\t" 00436 " movl 0(%[out]), %[ecx] # n_2_ccomplex_blocks\n\t" 00437 " shrl $4, %[ecx]\n\t" 00438 " andl $1, %[ecx]\n\t" 00439 " je .%=Leven\n\t" 00440 " # The count was odd, do 2 more taps.\n\t" 00441 " # Note that we've already got mm0/mm2 preloaded\n\t" 00442 " # from the main loop.\n\t" 00443 " movaps %%xmm0, %%xmm4\n\t" 00444 " mulps %%xmm2, %%xmm0\n\t" 00445 " shufps $0xb1, %%xmm4, %%xmm4 # swap internals\n\t" 00446 " addps %%xmm0, %%xmm6\n\t" 00447 " mulps %%xmm4, %%xmm2\n\t" 00448 " addps %%xmm2, %%xmm7\n\t" 00449 ".%=Leven:\n\t" 00450 " # neg inversor\n\t" 00451 " #movl 8(%%ebp), %[eax] \n\t" 00452 " xorps %%xmm1, %%xmm1\n\t" 00453 " movl $0x80000000, (%[out])\n\t" 00454 " movss (%[out]), %%xmm1\n\t" 00455 " shufps $0x11, %%xmm1, %%xmm1 # b00010001 # 0 -0 0 -0\n\t" 00456 " # pfpnacc\n\t" 00457 " xorps %%xmm1, %%xmm6\n\t" 00458 " movaps %%xmm6, %%xmm2\n\t" 00459 " unpcklps %%xmm7, %%xmm6\n\t" 00460 " unpckhps %%xmm7, %%xmm2\n\t" 00461 " movaps %%xmm2, %%xmm3\n\t" 00462 " shufps $0x44, %%xmm6, %%xmm2 # b01000100\n\t" 00463 " shufps $0xee, %%xmm3, %%xmm6 # b11101110\n\t" 00464 " addps %%xmm2, %%xmm6\n\t" 00465 " # xmm6 = r1 i2 r3 i4\n\t" 00466 " #movl 8(%%ebp), %[eax] # @result\n\t" 00467 " movhlps %%xmm6, %%xmm4 # xmm4 = r3 i4 ?? ??\n\t" 00468 " addps %%xmm4, %%xmm6 # xmm6 = r1+r3 i2+i4 ?? ??\n\t" 00469 " movlps %%xmm6, (%[out]) # store low 2x32 bits (complex) to memory\n\t" 00470 " #popl %%ebp\n\t" 00471 : 00472 : [eax] "r" (input), [edx] "r" (taps), [ecx] "r" (num_bytes), [out] "r" (result), [conjugator] "r" (conjugator) 00473 ); 00474 00475 00476 00477 00478 printf("%d, %d\n", leftovers, bound); 00479 00480 for(; leftovers > 0; leftovers -= 8) { 00481 00482 00483 *result += (input[(bound << 1)] * lv_conj(taps[(bound << 1)])); 00484 00485 } 00486 00487 return; 00488 00489 00490 00491 00492 00493 00494 } 00495 00496 #endif /*LV_HAVE_SSE*/ 00497 00498 00499 00500 #endif /*INCLUDED_volk_32fc_x2_conjugate_dot_prod_32fc_a_H*/